

User Manual

CC-Link IE TSN Master SDK

 port GmbH

 Regensburger Str. 7

 D-06132 Halle/Saale

Version:1.1 2/23

Disclaimer

This manual represents the current state of the product. Please check with port.de for the latest version as the
document may have a newer version since errors may be corrected or changes for a newer version of the product
may be incorporated. Port.de assumes no responsibility for errors in this document. Qualified feedback is
appreciated at service@port.de.

This document is the Intellectual Property of port.de and is intended to be used with the described product only.
It may be forwarded and/or copied in the original and unmodified format. All rights reserved.

The product enables to use technologies such as PROFINET, EtherNet/IP and/or EtherCAT and others. These
technologies are promoted by trade organizations, such as PNO (profibus.org), ODVA (odva.org) or ETG
(ethercat.org). These trade organizations as well maintain the specification and care about legal issues.
We strongly recommend to become a member of these organisations. Most technologies are making use of
patented or otherwise copyrighted technologies, approaches or other intellectual property. The membership
usually automatically entitles the member for use of most of the technology-inherent copyrighted or otherwise
protected Intellectual Property of the corresponding trade organization and most 3rd parties. Otherwise the user
will need to obtain licenses for many patented technologies separately.

Further we suggest to you to subscribe to the corresponding Conformance Test Tool of these trade organizations.
For instance the ODVA only accepts conformance test applications from companies who have a valid membership
and have a valid subscription to the recent Conformance Test Tool. We as port are members in all corresponding
organizations and are holding a subscription to these tools - however you as a customer need to have an own
membership and an own subscription to the tool.

All rights reserved

The programs, boards and documentations supplied by port GmbH are created with due diligence, checked
carefully and tested on several applications.
Nevertheless, port GmbH cannot guarantee and nor assume liability that the program, the hardware board or the
documentation are error-free or appropriate to serve a specific customer purpose. In particular performance
characteristics and technical data given in this document may not be interpreted to be guaranteed product
features in any legal sense.

For consequential damages, every legal responsibility or liability is excluded.
port has the right to modify the products described or their documentation at any time without prior warning, as
long as these changes are made for reasons of reliability or technical improvement.
All rights of this documentation are with port. Unless expressively granted - the transfer of rights to third parties
or duplication of this document in any form, whole or in part, is subject to written approval by port. Copies of this
document may however be made exclusively for the use of the user and his engineers. The user is thereby
responsible that third parties do not obtain access to these copies.
The soft- and hardware designations used are mostly registered and are subject to copyright.

Copyright
© 2020 port GmbH
Regensburger Straße 7
D-06132 Halle
Tel. +49 345 - 777 55 0
Fax. +49 345 - 777 55 20
E-Mail service@port.de
www.port.de
www.port-automation.com

mailto:service@port.de
http://www.port.de/
http://www.port-automation.com/

Version:1.1 3/23

Contents

1 Introduction ... 7

2 Writing an Application for the Master SDK .. 8

2.1 Overview ... 8

2.2 Configuration of the CC-Link IE TSN protocol stack .. 8

2.3 Creating a new instance of the CC-Link IE TSN protocol stack .. 9

2.4 Runtime behavior of the CC-Link IE TSN Master stack ... 10

2.5 Slave Configuration ... 11

2.6 Starting the CC-Link IE TSN Master Stack .. 13

2.7 Functions used during Run phase ... 13

2.8 Application Callback .. 14

2.9 Configuration of CANopen Slaves ... 17

2.10 CANopen Data Callback... 18

3 Supported Platforms .. 19

3.1 NXP LS1028A ... 19

3.1.1 Building the firmware.. 19

3.1.2 Flashing the firmware ... 19

3.1.3 Debug Interface ... 19

3.1.4 Configuration of the LS1028ARDB .. 20

3.1.5 Building the CC-Link IE TSN Master Application ... 20

3.1.6 Start CC-Link IE TSN Master application automatically ... 21

4 Conformance Test .. 23

Version:1.1 4/23

List of Figures

Figure 2.1: Creating a new instance of the CC-Link IE TSN master stack ... 9

Figure 2.2: Start an instance of the CC-LINK IE TSN master stack .. 13

Figure 2.3: Sample implementation of the application callback ... 17

Figure 2.4: Configuration of CANopen slave .. 17

Figure 2.5: CANopen startup command table entry .. 18

Figure 2.6: Register a CANopen callback handler .. 18

Version:1.1 5/23

List of Tables

Table 1.1: Directory structure of the Master SDK .. 7

Table 2.1: Configuration Functions of the CC-Link IE TSN protocol stack .. 9

Table 2.2: Runtime behavior functions of the CC-Link IE TSN Master stack 11

Table 2.3: Functions for Slave configuration .. 13

Table 2.4: Functions used during Run phase ... 14

Table 2.5: Arguements of the Application Callback Handler ... 14

Table 2.6: Handling of Application Callback IDs ... 16

Table 2.7: Members of callback data of CANopen data callback ... 18

Table 4.1: Configuration Macros of Conformance Test sample application 23

Version:1.1 6/23

Changelog

Version Changes

1.0

Initial Release

1.1 Chapter 2.7
- Added functions goal_cclIeTsnNmtUpload, goal_cclIeTsnNmtDownload,

goal_cclIeTsnSlaveProcTypeRead
Chapter 2.8

- Added callbacks GOAL_CCL_CB_IP_ADDR_DUPL and
GOAL_CCL_CB_READPROCTYPE_RES

Chapter 2.10
- Added callbacks GOAL_CCL_CO_CB_NMT_UPL_RES and

GOAL_CCL_CO_CB_NMT_DNL_RES
Chapter 3.1.5

- Updated description for OpenIL 1.9
- Fixed misspellings

Chapter 4
- Added new application settings

Version:1.1 7/23

1 Introduction

The CC-Link IE TSN Master SDK is used to implement a Management Master station or a Control
Master Station in a device. The SDK uses GOAL, port’s Industrial Communication Framework.
The SDK has the following directory structure.

Path Description

appl/goal_ccl_ie_tsn/01_master Sample application for communication with port’s Slave
SDK

appl/goal_ccl_ie_tsn/03_master_ct Sample application for Conformance Test

goal* GOAL core, platform independent

plat Platform specific files: architecture, board configuration,
drivers

projects/goal_ccl_ie_tsn/01_master Sample project for communication with port’s Slave SDK

projects/goal_ccl_ie_tsn/03_master_ct Sample project for Conformance Test

protos/ccl_ie_tsn CC-Link IE TSN protocol stack

protos/goal_ts (g)PTP protocol stack

protos/slmp SLMP protocol stack

Table 1.1: Directory structure of the Master SDK

Version:1.1 8/23

2 Writing an Application for the Master SDK

2.1 Overview

An application for the Master SDK is a GOAL application. It consists of three functions that are
called by GOAL: appl_init, appl_setup, appl_loop.
Additionally, the application can register a callback that is called by the CC-Link IE TSN Master stack
to inform the application about events.

The function appl_init is used to register components in GOAL, e.g. the CC-Link IE TSN protocol
stack.
The actual initialization of the application happens in appl_setup.

The application must include goal_includes.h and goal_ccl_ie_tsn_master.h.

2.2 Configuration of the CC-Link IE TSN protocol stack

The function appl_setup is called by GOAL during initialization. Within this function all functions
listed in this chapter can be used to configure the bahavior of the Management Master. All
Functions must be called before calling goal_cclIeTsnNew.

All functions return a status code indicating whether the operation succeeded or not.

Function Description

goal_cclIeTsnCfgManagementPrioritySet Set the Management Priority of this master station

goal_cclIeTsnCfgNumGmRecordEntriesSet Set the maximum number of Grandmaster Record entries

goal_cclIeTsnCfgNumSlavesSet Set the maximum number of slaves handled by this station

goal_cclIeTsnCfgNumS2sSubpayloads Set the maximum number of Subpayloads for Slave-2-Slave
communication

goal_cclIeTsnCfgSlaveCheckIntervalSet Set the check interval for pending slaves during RUN phase

goal_cclIeTsnCfgNodeTypeSet Set the node Type of this station (Management Master or
Control Master)

goal_cclIeTsnCfgCertificationClassSet Set the Certification Class of this station

goal_cclIeTsnCfgDeviceVersionSet Set the Device Version of this station

goal_cclIeTsnCfgDeviceVendorCodeSet Set the Device Vendor Code of this station

goal_cclIeTsnCfgDeviceProductIdSet Set the Product Id of this station

goal_cclIeTsnCfgDeviceExModelCodeSet Set the Device Expansion Model Code of this station

goal_cclIeTsnCfgDeviceTypeIdSet Set the Device Type Id of this station

goal_cclIeTsnCfglogSyncIntSet Set the default logarithmic Sync Tx interval

goal_cclIeTsnCfglogAnnounceIntSet Set the default logarithmic Announce Tx interval

goal_cclIeTsnCfglogPDelayIntSet Set the default logarithmic PDelay Tx interval

Version:1.1 9/23

goal_cclIeTsnCfgPdelayResTimeSet Set the time between Pdelay_Req and
Pdelay_Resp_Follow_Up

goal_cclIeTsnCfgDelaySetTimeSet Set the time between Peer delay calculation and port role
adjustment

goal_cclIeTsnCfgAnounceRelayTimeSet Set the time for relaying Announce frames from Slave port to
Master ports

goal_cclIeTsnCfgNumTxSubpayloadEntrieSet Set the number of allowed Tx Subpayload information entries.
The number defines how many Transmit Subpayloads can be
handled by this station.

goal_cclIeTsnCfgNumRxSubpayloadEntrieSet Set the number of allowed Rx Subpayload information entries.
The number defines how many Receive Subpayloads can be
handled by this station.

goal_cclIeTsnCfgNumCycTxHandlersSet Set the number of cyclic transmission handlers. The number
defines how many cyclic connections can be established at the
same time.

goal_cclIeTsnCfgNumCycRxHandlersSet Set the number of cyclic reception handlers. The number
defines how many cyclic connections can be established at the
same time.

goal_cclIeTsnCfgNumSlmpServerHandlesSet Define how many received SLMP requests can be processed in
parallel

goal_cclIeTsnCfgNumSlmpClientHandlesSet Defines how many SLMP requests can be sent in parallel.

goal_cclIeTsnCfgNumSlmpDivDataHandlesSet Define how many fragmented SLMP messages can be received
in parallel.

goal_cclIeTsnCfgClearOnHoldEnable Defines whether imported cyclic data is cleared or held if the
the sender's application is stopped.

goal_cclIeTsnCfgPtpPrio1Set Overwrite the PTP prio1 value for this station.

goal_cclIeTsnCfgLinkSpeedEnforce Enforce a link speed for all ports
Table 2.1: Configuration Functions of the CC-Link IE TSN protocol stack

2.3 Creating a new instance of the CC-Link IE TSN protocol stack

After the stack has been configured the function goal_cclIeTsnNew must be invoked to create a
new instance of the protocol stack. It is also used to register a callback handler for processing
events from the stack. The callback handler will be explained in detail in a later chapter.

Figure 2.1: Creating a new instance of the CC-Link IE TSN master stack

This function creates a handle (in this example it is called pCcl) that must be used for all other
function calls to reference the the stack instance.

 GOAL_STATUS_T res; /* result */
 static GOAL_CCL_HANDLE_T *pCcl = NULL; /**< GOAL CCL handle */

 /* create instance of CC-Link IE TSN stack */
 res = goal_cclIeTsnNew(&pCcl, GOAL_CCL_INSTANCE_DEFAULT, appl_goalCclCb);
 if (GOAL_RES_ERR(res)) {
 goal_logErr("Failed to instantiate CC-Link IE TSN stack");
 return res;
 }

Version:1.1 10/23

2.4 Runtime behavior of the CC-Link IE TSN Master stack

The functions in this chapter influence the runtime behaviour of the CC-Link IE TSN Master Station.
The functions must be called after goal_cclIeTsnNew returned successfully and before
goal_cclIeTsnStart is called. These functions can be directly called within appl_setup or at a later
point in time. These functions represent settings that usually come from an Engineering Tool.
Therefore, the settings can be applied after receiving the current configuration from the tool.

Function Description

goal_cclIeTsnDetectionAckEnforce Enforce DetecktionAck transmission with every Detection
frame

goal_cclIeTsnNetworkConfigSet set Network properties:
- cycle time
- CC-Link IE Field Coexistence
- number of Generic PTP devices
- TxProhibit time
- timeslot number for cyclic communication
- number of allowed consecutive cyclic errors

goal_cclIeTimeSlotAdd Add a time slot in ascending order from TSLT0 to TSLT7.

goal_cclIeTimeSlotEtherTypeAdd Assign an Ethertype to a timeslot in ascending order from
TSLT1 to TSLT7.

goal_cclIeTimeSlotMacAddrAdd Assign a Destination MAC address to a specific timeslot.

goal_cclIeTimeSlotVlanAdd Assign a VLAN Tag to a specific timeslot.

goal_cclIeTsnPortFilterSet Set a port filter for each port. Use the
GOAL_CCL_PORT_FILTER_* macros.

goal_cclIeTsnMulticastGroupAdd Register a Multicast Group for reception.

goal_cclIeTsnRxAddrOverlapCheckEnable Request Remote Stations to check their Rx Memory
configurations for overlaps.

goal_cclIeTsnCycleCounterIgnoreEnable Instruct all slaves to ignore the cycle counter in cyclic frames.

goal_cclIeTsnTimeoutsGet Get the timeout values of the Management Master state
machine.

goal_cclIeTsnTimeoutsSet Set the timeout values of the Management Master state
machine.

Version:1.1 11/23

goal_cclIeTsnTimeSyncSet Set the time synchronization settings:
- use 802.1AS or 1588v2
- domain number
- logarithmic Sync interval
- Sync Rx timeout factor
- logarithmic Announce interval
- announce Rx timeout
- logarithmic Pdelay interval
- DelayResp monitoring interval
- delay mechanism (E2E or P2P)
- number of tolerable Sync losses
- synchronization tolerance

goal_cclIeTsnNetworkNumberSet Set the SLMP network number

goal_cclIeTsnMasterIdSet Set the Id of the master station

goal_cclIeTsnCanOpenCallbackSet Register a CANopen callback handler

goal_cclIeTsnStationNumSet Set the station number of the device.

goal_cclIeTsnStationModeAdd Register a Station mode for this device

goal_cclIeTsnLinkDevAdd Add a Link device to a Station Mode
Table 2.2: Runtime behavior functions of the CC-Link IE TSN Master stack

2.5 Slave Configuration

For each slave station in the network a slave handle must be added. Each slave is represented by a
Slave Id. The functions must be called after goal_cclIeTsnNew returned successfully and before
goal_cclIeTsnStart is called. These functions can be directly called within appl_setup or at a later
point in time, i.e. after the expected slave configuration has been received from the Engineering
Tool.

Function Description

goal_cclIeTsnSlaveAdd Add a Slave station with an IPv4 address and the ID of
the Controll Master.
The function returns the Slave ID (used as internal
reference).

goal_cclIeTsnControlMasterAdd Add a Control Master station with an IPv4 address and
ist Master ID.
The function returns the station handle ID (used as
internal reference).

goal_cclIeTsnSlaveStationModeSet Set the expected station mode of a slave.

goal_cclIeTsnSlaveTsltMagnificationSet Set the timeslot magnification value for a slave.

goal_cclIeTsnSlavePortFilterSet Set the port filter for a slave. Each array entry
represents a port. Use the GOAL_CCL_PORT_FILTER_*
macros.

Version:1.1 12/23

goal_cclIeTsnSlaveCyclicConfigSet Set the cyclic configuration for a slave:
- if slave is a reserved station
- if Control data can be split in multiple frames
- EMG groups slave belongs to
- GOF groups slave belongs to
- number of sub cycles
- subCycle where frame is either sent or received
- if cyclic frames must be sent from all ports

goal_cclIeTsnSlaveInputAdd This function is used to register an Input Link device for
a slave, i.e. a Subpayload transmitted by the slave to
the master.
It requires the receive address in the master's memory,
the transmitt address in the slave's Link Device and the
data length.

goal_cclIeTsnSlaveOutputAdd This function is used to register an Output Link device
for a slave, i.e. a Subpayload received by the slave from
the master.
It requires the transmit address in the master's
memory, the receive address in the slave's Link Device
and the data length.

goal_cclIeTsnSlaveS2sTxSplAdd Add a Tx Subpayload for Slave-to-Slave communication
to a slave. The destination MAC address and IP address
of the receiving slave must be specified. Furthermore
the Subcycle settings must be specified.

goal_cclIeTsnSlaveS2sRxSplAdd Add a Rx Subpayload for Slave-to-Slave communication
to a slave.

goal_cclIeTsnSlaveS2sRxSrcAdd Add a Rx Source information item for Slave-to-Slave
communication to a slave. This function sets the IP
address of the sending slave and the subcycle settings.

goal_cclIeTsnSlaveRxMulticastGroupSet Add a Slave to a Rx multicast group. The slave's Output
Subpayloads will be sent with other Subpayloads via
Multicast frames.

goal_cclIeTsnSlaveTxMulticastGroupSet Add a Slave to a Tx multicast group. The slave's Input
Subpayloads will be received with other Subpayloads
via Multicast frames.

goal_cclIeSlaveTimeSlotMacAddrAdd Assign a Destination MAC address to a timeslot for this
slave.

goal_cclIeSlaveTimeSlotVlanAdd Assign a VLAN to a timeslot for this slave.

goal_cclIeTsnSlaveUncontrolledMulticastGroupAdd Add a slave to a Multicast Group that is not controlled
by this station, i.e. multicast group for slave-to-slave
communication

goal_cclIeTsnSlaveAppNetSyncEnable Request the slave to synchronize its application to the
network cycle.

Version:1.1 13/23

goal_cclIeTsnSlaveCyclicStopEnable Enable or disable the Cyclic Stop request for a slave
station.

goal_cclIeTsnSlaveCanOpenConfigSet Configure a Slave for CANopen communication.
Register startup commands, and TPDO and RPDO config
objects.

Table 2.3: Functions for Slave configuration

2.6 Starting the CC-Link IE TSN Master Stack

After finishing all settings of the runtime behavior and the expected slave configuration the stack
must be started by calling goal_cclIeTsnStart.

Figure 2.2: Start an instance of the CC-LINK IE TSN master stack

If this function succeeds the stack CC-Link IE TSN Master stack has been started and tries to detect
all configured slaves. All functions described in previous chapters cannot be used anymore.

2.7 Functions used during Run phase

After sucessfulling starting the stack. The application can use the following functions to access
cyclic data and to influence the stack’s behaviour.

Function Description

goal_cclIeTsnCyclicStopSet Enable or Disable Cyclic Stop for the Master Station.

goal_cclIeTsnInputGet Read Input data from the Cyclic Memory Map.
Only Input Link devices can be used. Each Link Device has ist own
memory map.

goal_cclIeTsnOutputSet Write Output data to the Cyclic Memory Map
Only Output Link devices can be used. Each Link Device has its own
memory map.

goal_cclIeTsnAppStopSet Enable or Disable Application Stop mode for this station.

goal_cclIeTsnAppErrorStopSet Enable or Disable Application Error Stop mode for this station.

goal_cclIeTsnEmergencyStopExec Issue an Emergency Stop due to internal error.
Calling this function will cause all controlled devices in the network
to shutdown.
After calling this function the application is expected to halt the
device and stop processing cyclic data.

 res = goal_cclIeTsnStart(pCcl);
 if (GOAL_RES_ERR(res)) {
 goal_logErr("Failed to start stack");
 }

Version:1.1 14/23

goal_cclIeTsnPowerSupplyErrorStopExec Issue an Emergency Stop due to Power supply error.
Calling this function will cause all controlled devices in the network
to shutdown.
After calling this function the application is expected to halt the
device and stop processing cyclic data.

goal_cclIeTsnOutputDevGet Get data from an Output Link Device (data received via Master-to-
Master communication).

goal_cclIeTsnInputDevSet Set data of an Input Link Device (data transmitted for Master-to-
Master communication).

goal_cclIeTsnSdoWrite Start a SDO Write operation for a slave.

goal_cclIeTsnSdoRead Start a SDO Read operation for a slave.

goal_cclIeTsnNmtUpload Get the NMT state of a CANopen Slave.

goal_cclIeTsnNmtDownload Set the NMT state of a CANopen Slave.

goal_cclIeTsnSlaveProcTypeRead Request processor Type information from a slave

Table 2.4: Functions used during Run phase

2.8 Application Callback

During initialization the application can register a callback handler with the function
goal_cclIeTsnNew.

The callback handler uses the following arguments:

Argument data type Description

GOAL_CCL_HANDLE_T * CC-Link IE TSN stack instance reference

GOAL_CCL_CB_ID_T callback ID indicating callback type

GOAL_CCL_CD_DATA_T * callback data, actual meaning depends on callback ID
Table 2.5: Arguements of the Application Callback Handler

Some callback ID also evaluate the return value of the handler to decide how to proceed.

Callback ID Description Callback data Return value
GOAL_CCL_CB_DETECTION_MISMATCH mismatch in detected

slaves and configuration
from engineering tool

NULL don't care

GOAL_CCL_CB_NETCFG_MISMATCH mismatch in network
configuration

pNetConfigMismatchId
(Id of Slave with
mismatching network
configuration)

GOAL_OK:
continue
operation
other: go to
Error state

Version:1.1 15/23

GOAL_CCL_CB_MASTERCFG_MISMATCH mismatch in
configuration of a Control
Master

NULL don't care

GOAL_CCL_CB_ERROR_STATE device entered Error
state

NULL don't care

GOAL_CCL_CB_UNKNOWN_SLAVE detected a slave that was
not set by the
engineering tool

pUnknownSlaveIpAddr
(IP Address of unknown
Slave)

don't care

GOAL_CCL_CB_SLAVE_UNDETECTED slave was not detected in
the network

pUndetectedSlaveId
(ID of Slave Handle)

GOAL_OK:
continue
operation
other: go to
Error state

GOAL_CCL_CB_SLAVE_WRONG_IP_ADDR slave has wrong IP
address (not in the same
subnet)

pWrongIpAddrSlaveId
(ID of Slave Handle)

GOAL_OK:
continue
operation
other: go to
Error state

GOAL_CCL_CB_SLAVE_IP_ADDR_DUPL slave has a duplicate IP
address

pDuplicateIpAddrSlaveId
(ID of Slave Handle)

GOAL_OK:
continue
operation
other: go to
Error state

GOAL_CCL_CB_SLMP_ERROR SLMP error received from
station

pSlmpErrorInfo->slaveId
(ID of Slave Handle)
pSlmpErrorInfo->cmd
(SLMP command)
pSlmpErrorInfo->subCmd
(SLMP subcommand)
pSlmpErrorInfo->endCode
(end code indicating error)

don't care

GOAL_CCL_CB_CM_UNCONFIGURED Control Master is not
configured

pUnconfiguredMasterId
(ID of Control Master
handle)

GOAL_OK:
continue
operation
other: go to
Error state

GOAL_CCL_CB_SLAVE_UNCONTROLLED Slave not controlled by its
Control Master

pUncontrolledSlaveId
(ID of Slave Handle)

GOAL_OK:
continue
operation
other: go to
Error state

Version:1.1 16/23

GOAL_CCL_CB_WRONG_GRANDMASTER Slave has not the chosen
Grandmaster

pWrongGrandmasterSlaveId
(ID of Slave Handle)

don't care

GOAL_CCL_CB_RSV_TRANSIENT_DONE reserved transient
transmission done

NULL don't care

GOAL_CCL_CB_RESERVED_STATION_ON device entered Reserved
Station mode

NULL don't care

GOAL_CCL_CB_RESERVED_STATION_OFF device left Reserved
Station mode

NULL don't care

GOAL_CCL_CB_CYCLIC_STOP_ON cyclic communication
stopped

NULL don't care

GOAL_CCL_CB_CYCLIC_STOP_OFF cyclic communication
restarted

NULL don't care

GOAL_CCL_CB_OWN_STATION_EMG_STO
P

device received
Emergency Stop request

pEmgGroup
(EMG group causing stop)

don't care

GOAL_CCL_CB_CYCLIC_ERROR_ON other station causes
cyclic error

pCyclicErrIpAddr
(IP address of Slave)

don't care

GOAL_CCL_CB_CYCLIC_ERROR_OFF other station fixed cyclic
error

pCyclicErrIpAddr
(IP address of Slave)

don't care

GOAL_CCL_CB_OTHER_STATION_EMG_ST
OP

Emergency stop for an
Emergency Group

pEmgGroup
(EMG group that will be
stopped)

don't care

GOAL_CCL_CB_OTHER_STATION_GOF_ST
OP

Emergency stop for a GOF
Group

pGofGroup
(GOF group that will be
stopped)

don't care

GOAL_CCL_CB_SLAVE_INVALID_CFG expected configuration of
slave is not valid

pInvalidCfgSlaveId
(ID of Slave Handle)

GOAL_OK:
continue
operation
other: go to
Error state

GOAL_CCL_CB_SLAVE_INVALID_DATA_O
N

received invalid control
data from slave

pInvalidCycDataSlaveId
(ID of Slave Handle)

don't care

GOAL_CCL_CB_SLAVE_INVALID_DATA_OF
F

control data from slave is
valid again

pInvalidCycDataSlaveId
(ID of Slave Handle)

don't care

GOAL_CCL_CB_CYC_COM_ENABLED station started to send
and receive process data

NULL don't care

GOAL_CCL_CB_CYC_COM_DISABLED station stopped to send
and receive process data

NULL don't care

GOAL_CCL_CB_IP_ADDR_DUPL station’s IP address is also
used by another station

NULL don’t care

GOAL_CCL_CB_READPROCTYPE_RES received a ReadProcType
response

pReadProcTypeRes
(ReadProcType response
data)

don’t care

Table 2.6: Handling of Application Callback IDs

Version:1.1 17/23

Figure 2.3: Sample implementation of the application callback

2.9 Configuration of CANopen Slaves

CANopen slaves are configured with the same functions as Link Device slaves. Additionally, there is
the function goal_cclIeTsnSlaveCanOpenConfigSet to set CANopen specific properties of the slave.

Figure 2.4: Configuration of CANopen slave

static GOAL_STATUS_T appl_goalCclCb(
 GOAL_CCL_HANDLE_T *pCclm, /**< GOAL CCL handle */
 GOAL_CCL_CB_ID_T cbId, /**< callback ID */
 GOAL_CCL_CD_DATA_T *pCbData /**< callback data */
)
{
 GOAL_STATUS_T res = GOAL_OK; /* result */

 switch (cbId) {
 /* ... */

 case GOAL_CCL_CB_SLAVE_WRONG_IP_ADDR:
 goal_logInfo("slave 0x%04x has unexpected IP address",
 *(pCbData->pWrongIpAddrSlaveId));
 /* abort initialization */
 res = GOAL_ERROR;
 break;

 /* ... */
 }

 return res;
}

static uint16_t slave2RpdoMapObj = 0x1601; /**< Slave2: RPDO Mapping object */
static uint16_t slave2TpdoMapObj = 0x1A01; /**< Slave2: TPDO Mapping object */
static GOAL_CCL_CO_STARTUP_T slave2StartUpCmds[] = {
 {GOAL_TRUE, 0x1C00, 1, sizeof(uint16_t), (uint8_t *) &slave2RpdoMapObj},
 {GOAL_TRUE, 0x1C01, 1, sizeof(uint16_t), (uint8_t *) &slave2TpdoMapObj},
};
static uint16_t slave2TpdoCfgTbl[] = {
 0x1C01,
};
static uint16_t slave2RpdoCfgTbl[] = {
 0x1C00,
};

res = goal_cclIeTsnSlaveCanOpenConfigSet(pCcl, slaveId,
 slave2StartUpCmds, ARRAY_ELEMENTS(slave2StartUpCmds),
 slave2TpdoCfgTbl, ARRAY_ELEMENTS(slave2TpdoCfgTbl),
 slave2RpdoCfgTbl, ARRAY_ELEMENTS(slave2RpdoCfgTbl));
if (GOAL_RES_ERR(res)) {
 goal_logErr("Failed to configure CANopen properties of slave %u", slaveId);
}

Version:1.1 18/23

An entry in the startup command table has the following fields:

Figure 2.5: CANopen startup command table entry

The other two tables contain lists of TPDO Config Objects and RPDO Config objects that must be
enabled for cyclic communication.
In the RUN phase the application can use the functions goal_cclIeTsnSdoWrite and
goal_cclIeTsnSdoRead to start SDO write or read operations.

2.10 CANopen Data Callback

The application can use the function goal_cclIeTsnCanOpenCallbackSet to register a callback
handler for CANopen object access.

Figure 2.6: Register a CANopen callback handler

The handler is called by the protocol stack every time a SDO Read or Write response was received,
including those of the startup commands.
The callback handler uses the callback IDs GOAL_CCL_CO_CB_SDO_READ_RES or
GOAL_CCL_CO_CB_SDO_WRITE_RES to indicate if the callback data refers to a read response or a
write response.
The callback IDs GOAL_CCL_CO_CB_NMT_UPL_RES and GOAL_CCL_CO_CB_NMT_DNL_RES are
used to indicate results of an NMT Upload or Download request.

Member Data type Description

slaveId uint16_t slave id

endCode uint16_t SLMP end code (status of operation)

index uint16_t object index (only valid during startup or if endCode == 0x0000)

subIndex uint8_t object subindex (only valid during startup or if endCode == 0x0000)

dataLen uint16_t object data length (only valid for read access and if endCode == 0x0000)

pData uint8_t * object data (only valid for read access and if endCode == 0x0000) or
current NMT state of responder (as a uint8_t variable)

Table 2.7: Members of callback data of CANopen data callback

typedef struct {
 GOAL_BOOL_T wrFlag; /**< write or read access */
 uint16_t index; /**< object index */
 uint16_t subIndex; /**< object subindex */
 uint16_t dataLen; /**< size of data to be written or read */
 uint8_t *pData; /**< write data buffer */
} GOAL_CCL_CO_STARTUP_T;

 res = goal_cclIeTsnCanOpenCallbackSet(pCcl, appl_goalCclCanOpenCb);
 if (GOAL_RES_ERR(res)) {
 goal_logErr("Failed to register CANopen callback");
 }

Version:1.1 19/23

3 Supported Platforms

Since the CC-Link IE TSN Protocol stack runs on GOAL It can run on any platform supported by
GOAL. However in order to fullfill the requirements of a Class B device special hardware support is
needed.
The hardware must support timestamping of Ethernet frames as defined by IEEE 1588v2 or IEEE
802.1AS.
Additionally it must support time aware queuing of Ethernet framesas defined by IEEE 802.1Qbv.

3.1 NXP LS1028A

The NXP LS1028A is a SoC that fullfills the hardware requirements for a Class B device.
There is an evaluation board called LS1028ARDB.

3.1.1 Building the firmware
The LS1028ARDB uses OpenIL, a Linux distribution for industrial automation with Realtime
support. The distribution can be built with Buildroot.

• git clone https://github.com/openil/openil.git

• cd openil

• git checkout OpenIL-v1.9-202009

• make nxp_ls1028ardb-64b_defconfig

• make 2>&1 | tee build.log

3.1.2 Flashing the firmware
Once the firmware has been built it must be copied to the SD-Card of the LS1028ARDB.

• insert SD-Card into Linux PC
o card is listed as /dev/sdX [e.g. /dev/sdc]
o see log via dmesg

• in directory openil:
o sudo dd if=output/images/sdcard.img of=/dev/sdc bs=1024
o ATTENTION: choosing the wrong output device will overwrite sections of the

PC’s HDD/SDD causing data loss

• insert SD-Card into LS1028ARD and start device

3.1.3 Debug Interface
A serial console is available on UART1.
Use the following parameters: 115,200 baud/s, 8 data bits, no parity, 1 stop bit.

Version:1.1 20/23

3.1.4 Configuration of the LS1028ARDB

It is possible to configure the number of ports used for CC-Link IE TSN. By default each port of the
integrated TSN Switch is independent, i.e. there is no forwarding between these ports.
The interfaces representing these ports are called swp0 to swp3. In order to enable forwarding
between two or more ports the following script could be executed:

#!/bin/sh

create a bridge device
ip link add name switch type bridge
ip link set switch up
add 1st port
ip link set swp0 master switch
ip link set swp0 up
add 2nd port
ip link set swp1 master switch
ip link set swp1 up
uncomment to add 3rd port
#ip link set swp2 master switch
#ip link set swp2 up
uncomment to add 4th port
#ip link set swp3 master switch
#ip link set swp3 up

add a route for this interface (subnet address might need to adjusted)
ip route add 192.168.3.0/24 dev switch

This will create a new interface called “switch”.

By default the OpenIL image runs netopeer2, a NETCONF server. This server interfers with the
Realtime behaviour of the GOAL process. Therefore the server must be removed from the
initialization scripts:

rm /etc/init.d/S91netopeer2-server

3.1.5 Building the CC-Link IE TSN Master Application
The application can be built with aarch64-linux-gnu-gcc.
Navigate to the project folder of a sample application, e.g.
“projects/goal_ccl_ie_tsn/03_master_ct/gcc”.

• Select the target platform (only required once)
o make select
o enter the number of “linux_nxp_ls1028a”

• build sample application
o make

Version:1.1 21/23

The binary is located at
 “projects/goal_ccl_ie_tsn/03_master_ct/gcc/linux_nxp_ls1028a/goal_ linux_nxp_ls1028a.bin”.
The file must be copied to the LS1028ARDB, e.g. via scp.

On the LS1028ARDB:

- reduce kernel log messages to only critical ones
o echo 1 > /proc/sys/kernel/printk

- disable memory overcommitting
o echo 2 > /proc/sys/vm/overcommit_memory

- make application ecutable
o chmod +x goal_ linux_nxp_ls1028a.bin

- start application (adjust Ethernet port if necessary)
o ./goal_ linux_nxp_ls1028a.bin -i <IFACE>

Note:
<IFACE> is the ethernet interface that GOAL should use. This is either the bridge device “switch” or
a standalone port, e.g. “swp0”.

3.1.6 Start CC-Link IE TSN Master application automatically

In order to start the Master SDK automatically after boot up, a script must be created in the
directory /etc/init.d, e.g. S99GOAL.

The script should have the following content:

#!/bin/sh

CC-Link IE TSN Master SDK

GOAL=/root/goal_linux_nxp_ls1028a.bin
start() {
 echo 1 > /proc/sys/kernel/printk
 echo 2 > /proc/sys/vm/overcommit_memory
 printf "Starting CC-Link IE TSN Master SDK: "
 ${GOAL} -i swp0 &
 echo "OK"
}
stop() {
 printf "Stopping CC-Link IE TSN Master SDK: "
 killall $(basename ${GOAL})
 echo "OK"
}
restart() {
 stop
 start
}

case "$1" in
 start)
 start

Version:1.1 22/23

 ;;
 stop)
 stop
 ;;
 restart|reload)
 restart
 ;;
 *)
 echo "Usage: $0 {start|stop|restart}"
 exit 1
esac

Please make sure that the script is executable:
chmod +x /etc/init.d/S99GOAL

Version:1.1 23/23

4 Conformance Test

In order to perform the conformance test, several configurations must be tested.
Configuration of the Master Station the network and the expected slaves is done by API functions
as described in chapter 2.
There is a sample application that contains the required configurations. In can be found in
appl/goal_ccl_ie_tsn/03_master_ct.

There are configuration macros to enable or disable features. If a new configuration is required,
the macros must be set to the appropriate values. The application must be recompiled (see
chapter 3.1.5) and copied to the LS1028ARDB (see chapter 3.1.6).

Configuration Macro Description

GOAL_APPL_SLAVE0_ENABLED 1: enable Slave 0
0: disbale Slave 0
(NZ2GN2B1-32DTE, 192.168.3.1)

GOAL_APPL_SLAVE1_ENABLED 1: enable Slave 1
0: disbale Slave 1
(RJ71GN11-T2, 192.168.3.2)

GOAL_APPL_SLAVE2_ENABLED 1: enable Slave 0
0: disbale Slave 0
(MR-J5-10G, 192.168.3.10)

GOAL_APPL_SLAVE2_ALT_MAPPING 1: usa an alternate PDO mapping for Slave 2
0: use default PDO mapping for Slave 2

GOAL_APPL_CO_OBJ_TEST 1: execute CANopen object test for Slave 2
0: do not execute test

GOAL_APPL_SLMP_TEST 1: execute SLMP Client test
0: do not execute test

GOAL_APPL_TIMESYNC_1588 1: use IEEE 1588v2 for time synchronization
0: use IEEE 802.1AS for time synchronization

GOAL_APPL_MULTICAST 1: use multicast frames for cyclic communication
0: use unicast frames for cyclic communication

GOAL_APPL_TIME_SYNC_SLAVE 1: device is not the Grandmaster
0: device is the Grandmaster

GOAL_APPL_LINKSPEED_100 1: enforce a Link speed of 100 Mbit/s
0: enforce a Link speed of 1000 Mbit/s

Table 4.1: Configuration Macros of Conformance Test sample application

