# **EtherCAN Gateway**

#### **Overview**

Connecting "embedded" controllers via the Internet becomes more and more popular in the last time. World wide computer networks are using the common Ethernet cabling standard and TCP/IP as common protocol family.

The reason is the increasing data communication for recording the production and operating data as well as for visualization and remote maintenance.



The *EtherCAN* Gateway combines the decentral CAN and CANopen networks with the classical Ethernet network. To communicate via Ethernet the TCP/IP protocol is used, while on the CAN bus the communication is realized by CANopen, DeviceNet or another user-specific protocol.

## **Application**

Merging the data of production control and data acquisition with operating data lately became a standard requirement of application users.

It is foreseeable, that the real-time control of machines still will be implemented directly with event controlled real time capable field buses for a longer period of time. Therefore linking the control network over a gateway to office or automation networks or to the Internet at all via TCP/IP is an interesting and cost-effective solution.

This task is fulfilled by the CAN-TCP/IP Gateway *EtherCAN*. The basis for the *EtherCAN* forms a powerful 32-bit CPU with integrated Ethernet controller and the CAN-Controller Philips SJA1000.

### **Description**

On the *EtherCAN* an Embedded LINUX<sup>TM</sup> operating system is installed. Therefore a lot of services like FTP, Telnet or an integrated web server but also a RS-232 interface are available to run user-specific applications.

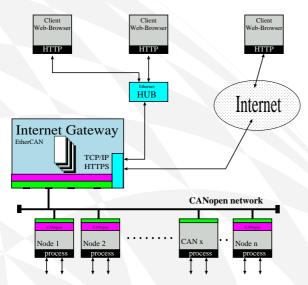
For own developments a Developer Package is available. It includes besides tools to generate the FLASH image, a cross compiler and necessary libraries. Further examples in C, Java or Tcl can be downloaded from our web site http://www.port.de.

The usage of the *CANopen Library* is possible to create CANopen applications.

Of course ready-to-run programs are available.

For the usage as gateway to CANopen based systems the CANopen Server *m4d* running on the *EtherCAN* realizes the complete handling of the CANopen protocol. It runs as a Network Management Master, can configure LSS slaves with the LSS commands and supports the following CANopen services:

- NMT Services
- · Heartbeat, Node Guarding
- SDO Services including Domain Transfers
- PDO Consumer and Producer
- SYNC Producer
- Emergency Consumer


Cyclic services like SYNC of Heartbeat are handled autonomously.

As protocol between a client application and the CANopen Server the CiA specification DSP309-3 is used at the Ethernet side.

For a comfortable handling of the CANopen Server the platform independent and graphical application *CANopen Device Monitor* can be used.



For CAN based systems without High-Layer protocol the *EtherCAN* provides the CAN server *horch* that can send all received data via a TCP/IP port to other applications.



Sending CAN message via the CAN server is possible, too. In the easiest case the server is used as a CAN analyzer via the Ethernet. The CAN Analyzer CAN-RE*port* can be used for this.

### **Advantages**

The main advantage of such a network linking is the possibility to remote control or do a remote observation and/or service of machines and installations from any place in the world.

The following advantages are to be mentioned further:

- Combination of the advantages from the CAN/CANopen fieldbus technology with the Ethernet
- high transmission capacity in the Ethernet area
- high security and reliability
- no limitation referable the network topology
- TCP/IP is an established standard in information technology
- free access is available to all modules about the network
- low costs per module and for the overall system
- usage of the TCP/IP-protocol

By using the *EtherCAN* gateway also costs for expensive special wirings can be saved, because existing CANopen networks or Ethernet connections can be used again.

#### **Technical Data**

| 12 - 30 V                |
|--------------------------|
| max. 150mA               |
| Ethernet/CAN             |
| 32-bit-RISC-ARM          |
| 16 MB RAM                |
| 2 MB FLASH               |
| 80-MHz clock frequency   |
| RS232 Interface          |
| CAN High Speed Interface |
| NXP SJA1000              |
| D-SUB-9f                 |
| D-SUB-9m and D-SUB-9f    |
| CiA-DS 102               |
| RJ45                     |
| D-SUB-9m                 |
| 0 - 85 °C                |
| max. 90%                 |
| non-condensing           |
| 100mm x 90 mm x 40mm     |
| approx. 200 g            |
|                          |

## **Scope of Delivery**

- EtherCAN Gateway
- manual

## **Ordering Information**

0540/07 EtherCAN-CI-ARM7W (Winbond) 0540/08 EtherCANopen-CI-ARM7W (Winbond) 0540/21 Developer Package DEV-PACK-ETH



#### **Engineering Services**

**port** is providing engineering services and trainings for our business activities:

- CAN and CAN-based protocols: CANopen, J1939, DeviceNet
- Industrial Ethernet Protocols: POWERLINK, Ether-Net/IP, EtherCAT
- Implementation of devices according to CANopen device profiles
- VHDL based solutions for industrial applications
- application specific implementations or enhancements
- embedded LINUX projects

#### **Notice**

Brands and product names are trademarks or registered trademarks of their respective companies. The product will be continuously improved. *port* therefore reserves the right to change technical properties at any time without appointment.



port GmbH Regensburger Straße 7b D-06132 Halle/Saale +49 345 777 55 0 service@port.de

Functional demo versions of the CAN-RE*port* and *CANopen Device Monitor* SW tools are available for download on: http://www.canopen-tools.com